edexcel 츷

Mark Scheme (Results)
June 2014
GCE Chemistry (6CH04/01)
General Principles of Chemistry I

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038324
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 ~ (a) ~}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 ~ (b) ~}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1}(\mathbf{c})$	A		$\mathbf{1}$
Question Number Correct Answer Reject			
$\mathbf{1}(\mathbf{d})$	D		Mark

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 ~ (a) ~}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 (b)}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 (c)}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{2 (d)}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{3}$	D		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{4 (a)}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{4 ~ (b) ~}$	B		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{4 (c)}$	C		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
5	B		1
6 (a)	B		1
Question Number	Correct Answer	Reject	Mark
6 (b)	C		1
Question Number	Correct Answer	Reject	Mark
6 (c)	D		1
Question Number	Correct Answer	Reject	Mark
6 (d)	A		1
Question Number	Correct Answer	Reject	Mark
7 (a)	A		1
Question Number	Correct Answer	Reject	Mark
7 (b)	C		1
Question Number	Correct Answer	Reject	Mark
8	A		1

Section B

Question Number	Acceptable Answers	Reject	Mark
9 (a)(i)	+89.6-[+32.7 + 165] (1)		2
	$=-108.1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$		
	Value, sign and units (1)		
	Ignore SF except one		
	Internal TE for recognisable numbers allowed, for example:		
	$\Delta \mathrm{H}^{\ominus}{ }_{\text {at }}$ magnesium chloride ($147.7 \rightarrow-223.1$)		
	Halving $\mathrm{S}^{\ominus}\left[\mathrm{Cl}_{2}\right](82.5 \rightarrow-25.6)$		
	Correct answer with no working (2)		
	+/no sign $108.1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} / \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$		

Question Number	Acceptable Answers	Reject	Mark
9 (a)(ii)	(The sign is negative because) Any two from: - (A solid and) a gas reacting to form a solid. OR (Entropy decreases because) a gas reacting to form a solid. - There are fewer ways of arranging particles in a solid than a gas or viceversa. OR Decrease in disorder as solid more ordered than gas or vice versa - Two mol(es) of reactant forming one mole of product. (Ignore two molecules form one molecule) OR Number of mol(es)/molecules decreases OR Fewer/less mol(es) of products than reactants	Energy...	2
		'(Positive) Answer is as expected...' (0)	

Question Number	Correct Answer1	Reject	Mark
9 (c)	$\begin{aligned} & \Delta \mathrm{S}_{\text {surroundings }}=-\frac{\Delta \mathrm{H}^{\ominus}}{298} \\ & \Delta \mathrm{H}^{\ominus}=-\Delta \mathrm{S}_{\text {surroundings }}^{\ominus} \times 298 \end{aligned}$ OR $\begin{align*} \Delta H^{\theta-} & =-2152 \times 298 \tag{1}\\ & =-641.296 \\ & =-641.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ ALLOW $=-641.3 \times 10^{3} \mathbf{J ~ m o l}^{-\mathbf{1}}$ Note 1. $-640.1338=-640.1$ (if 2040/answer to part (b) used to recalculate entropy change of surroundings first.) 2. $\Delta \mathrm{H}^{\theta}=+641.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ 3. $\Delta \mathrm{H}^{\theta}=-\frac{\Delta \mathrm{S}_{\text {surroundings }}}{298}$ Ignore SF except one		2

Question Number	Correct Answer	Reject	Mark
$\mathbf{9 (d) (i)}$	$50 \times 4.2 \times 22.5$		$\mathbf{1}$
	$=4725(\mathrm{~J})$ Ignore sign		
	ALLOW		
	4.725 kJ		

Question Number	Correct Answer	Reject	Mark
9 (d)(ii)	There are two legitimate answers to this part. If both methods have been used, you must send the item to review under mark scheme $\begin{aligned} & (-) 4725 \div 0.0300 \\ & =-157.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) /-157500 \mathrm{~J} \mathrm{~mol}^{-\mathbf{1}} \end{aligned}$ OR $(-) 4725 \div 0.0500$ $=/-94.5\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) /-94500 \mathbf{J ~ m o l}^{-1}$ ALLOW TE answer (d)(i) $\div 0.0300 / 0.0500$ Ignore SF except one Value Sign The mark for the negative sign is awarded for their calculation even if value is wrong, providing any energy divided by moles or energy multiplied by 1 / number of moles		2

Question Number	Correct Answer	Reject	Mark
9 (d)(iii)	There are two correct answers:		3
	Using 0.03 gives the answer of -381.75 kJ mol^{-1}		
	Using 0.05 gives the answer of -350.25 kJ mol^{-1}		
	Both these answers score full marks with or without correct working.		
	First mark		
	Appreciation of Hess's Law either in words, numbers, symbols or on the diagram		
	For example,		
	$\Delta \mathrm{H}_{\text {solution }}+$ Lattice energy		
	$\begin{equation*} =\Delta \mathrm{H}_{\text {hydration }} \mathrm{Mg}^{2+}+(2) \Delta \mathrm{H}_{\text {hydration }} \mathrm{Cl}^{-} \tag{1} \end{equation*}$		
	Second mark		
	$2 \Delta \mathrm{H}_{\text {hydration }} \mathrm{Cl}^{-}=-2526-157.5-$		
	$(-1920)=-763.5$		
	OR		
	$2 \Delta \mathrm{H}_{\text {hydration }} \mathrm{Cl}^{-}=-2526-94.5-$		
	$(-1920)=-700.5$		
	ALLOW		
	Any number or group of numbers minus (-1920)		
	Third mark		
	$\Delta \mathrm{H}_{\text {hydration }} \mathrm{Cl}^{-}=-381.75\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		
	OR		
	$\Delta \mathrm{H}_{\text {hydration }} \mathrm{Cl}^{-}=-350.25\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		
	Any number, wherever it has come from,		

	divided by two can score this mark, provided that the sign is consistent.		
Ignore SF except one	(1)		
Use of lattice energy - 2326 gives $-281.75 /-250.25$ scores (2)			
ALLOW			
TE from (d)(ii)			

Question Number	Correct Answer	Reject	Mark
10(a)(i)	Sodium/potassium dichromate ((VI)) and (Dilute/concentrated) sulfuric acid OR correct formulae / H^{+}and $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ ALLOW H^{+}and $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} /$ acidified dichromate((VI)) Reflux/distil Ignore 'heat', 'warm', and 'boil’ alone. ALLOW Just 'under reflux' Just 'under distillation' Second mark depends on mention of dichromate/ $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ in first part OR KMnO_{4} and acid with heat	Hydrochloric acid	2

Question Number	Correct Answer	Reject	Mark
$\begin{align*} & 10 \\ & \text { (a) (ii) } \tag{1} \end{align*}$	Carbonyl group - addition of 2,4-dinitrophenylhydrazine / 2,4-DNP(H) / Brady's reagent to give yellow/orange/red precipitate/ppt/ppte/solid/crystals ALLOW recognisable spelling e.g., percepitate $\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}$ reaction with iodine in alkali/ $\mathrm{NaOH} / \mathrm{KOH} / \mathrm{OH}^{-}$ ALLOW Iodoform/tri-iodomethane/haloform AND reaction/test to form (pale) yellow / cloudy precipitate/solid/crystals Ignore references to smell Ignore heat in either part Note - In both cases result mark depends on test being recognisably correct even if it did not score a mark Examples: DNP gives yellow ppt Iodine test gives yellow ppt - Tests for aldehydes with correct results, no marks	2-DNP/4DNP Just DNP Brick red ppt	4

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$ (b)(ii)	Forms a racemic mixture Because bonds around C=O are planar OR	(1) Butanone/molecule/it is planar C=O is planar Carbonyl group/reaction site is (trigonal) planar	Carbonyl bond is planar OR
Bonds around carbonyl carbon are planar	Intermediate is planar		
Cyanide can attack from either side / above or below	(1)		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0 (\mathbf { c }) (\mathbf { i })}$	(Acid) hydrolysis OR Alkaline hydrolysis followed by acidification	Hydration	$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$ (c)(ii)	The O-H absorptions for alcohol and carboxylic acid overlap.	Just 'both have OH groups'	$\mathbf{1}$
	OR	OH absorption for an acid is very broad	Just 'two OH Oroups OResent'
	Quote data booklet values which must show some overlap, to include 3300 to 3200.		
	ALLOW OH absorptions similar/the same.		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$ $\mathbf{(c) (i i i)}$	(Chemical shift δ) 2.0 $-4.0(\mathrm{ppm}) /$ any value within this range ALLOW Correct number followed by δ, eg 3δ	$\mathbf{1}$	

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$ $\mathbf{(c) (i v) ~}$	There is no hydrogen atom/proton on the adjacent/neighbouring carbon atom		$\mathbf{1}$
	ALLOW No adjacent/neighbouring hydrogens/protons		

Question Number	Correct Answer	Reject	Mark
10 (d)			2
	Ester linkage Rest of molecule ALLOW Attached chains as structural formulae I gnore n or other numbers outside bracket		

Total for Question 10 = 18 marks
$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Correct Answer } & \text { Reject } & \text { Mark } \\ \hline \mathbf{1 1 (a)} & \mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}+\mathrm{I}_{2} & & \mathbf{1} \\ & \text { ALLOW multiples } \\ \text { Ignore state symbols even if incorrect }\end{array}\right)$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1 (b) (i)}$	Blue/black /blue-black	Purple	$\mathbf{1}$
	OR		
	Colourless to blue-black/ blue/black		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$ (b)(ii) The mixture would change colour/ go blue/black /blue-black immediately/ straight away ALLOW ...too quick(ly)/too early ...quicker $\mathbf{1}$...no time delay			

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$ (b) (iii)	(As quickly as iodide reacts to form iodine it is) reduced/turned back to iodide by the thiosulfate ions		$\mathbf{1}$
	ALLOW		
Persulfate reacts with thiosulfate first.			
	OR		

| Question
 Number | Correct Answer | |
| :--- | :--- | :--- | :--- | :--- |
| (1) (i)
 (c) | Reject | Mark |

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & 11 \\ & \text { (c) (ii) } \end{aligned}$	First order This mark is independent of the graph drawn Because the graph is a straight line (through the origin)/ rate is proportional to $\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right.$] OR As concentration increases by (factor of) 2 rate increases by 2 (or any other numbers, including ' x ') OR Rate increases linearly (with concentration) OR Gradient of line is constant Second mark depends on first order	Just ‘as concentration increases rate increases'	2

Question Number	Correct Answer	Reject	Mark
$\begin{align*} & 11 \tag{1}\\ & (c)(i i i) \end{align*}$	Rate $=\mathrm{k}\left[\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}\right]\left[\mathrm{I}^{-}\right]$ TE from (c)(ii) Units - $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ ALLOW Internal TE from rate equation Units in any order	Incorrect formulae	2

Question Number	Correct Answer	Reject	Mark
11 (d)(i)	Method 1		3
	First mark		
	Gradient $=-\mathrm{E}_{\mathrm{a}} / \mathrm{R}$		
	$\begin{align*} & \text { OR } \\ & \qquad E_{a}=-R \times \text { gradient } \tag{1} \end{align*}$		
	Second mark		
	$(\text { Gradient }=) \frac{-3.0-(-3.69)}{(3.30-3.41) \times 10^{-3}}$		
	OR		
	$=-6272.7(\mathrm{~K})$		
	Please award this mark if -6272.7 is seen anywhere!		
	Method 2		
	First mark		
	Setting up two simultaneous equations		
	Second mark		
	Subtracting one equation from the other or other correct methods of solution		
	Third mark (applies to both methods)		
	Third mark (applies to both methods) $\begin{aligned} \left(\mathrm{E}_{\mathrm{a}}\right) \quad= & +52126 \mathrm{~J} \mathrm{~mol}^{-1} \\ & /+52.1(26) \mathrm{kJ} \mathrm{~mol}^{-1} \end{aligned}$		
	Note: TE can only be given if either method 1 or method 2 has been clearly carried out.	Negative sign	
	Positive sign giv		
	OR		
	Two negative signs clearly cancel in method and no sign given		
	Correct answer with or without working, with sign and units		
	Ignore SF unless only one		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	Either		$\mathbf{1}$
(d) (ii)	Take readings at different temperatures		
	OR Repeat at the same two temperatures ALLOW Just 'repeat the experiment'		

Total for Question 11 = 14 marks
Total for Section B = 49 marks

Section C

Question Number	Correct Answer	Reject	Mark
12(a)(i)	$\text { Mass of ethanoic acid }=0.04 \times 60.1$ $\begin{equation*} =(2.404 \mathrm{~g}) \tag{1} \end{equation*}$ Volume of ethanoic acid $=2.404 \div$ $1.049=$ $\begin{equation*} 2.2917=2.3\left(\mathrm{~cm}^{3}\right) \tag{1} \end{equation*}$ Correct answer with no working I gnore SF except only one ALLOW 60.0 for molar mass which gives mass 2.4 and volume 2.288 $\begin{equation*} =2.3 \mathrm{~cm}^{3} \tag{2} \end{equation*}$ OR First step $1.049 \div 60 / 60.1$ to find number of moles in $1 \mathrm{~cm}^{3}=0.017$ Then volume $=0.04 \div 0.017$ $=2.3529\left(\mathrm{~cm}^{3}\right)$ But note, if whole calculation done on calculator, 60 gives 2.2879 and 61 gives 2.2917. If units given, they must be correct, but penalise wrong units only once here.		2

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	Syringe	Gas syringe	$\mathbf{1}$
(a)(ii)	ALLOW Burette Graduated/adjustable pipette	Biuret	

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$ (a)(iii)	To prevent...		
evaporation/vapour escaping			
water vapour entering		$\mathbf{1}$	
	OR To maintain a closed system OR maintain a closed environment To ALLOW To prevent: air oxidizing the alcohol reaction with air OR Due to volatility (of chemicals) IGNORE		

Question Number	Correct Answer	Reject	Mark
$\begin{align*} & 12 \tag{1}\\ & \text { (a) (iv) } \end{align*}$	First and second mark Phenolphthalein From colourless to (pale) pink/red ALLOW Other indicators with $\mathrm{pK}_{\text {in }}$ in range 7.5 10 Some examples are: Thymol blue ((base)) (yellow to blue) Phenol red (yellow to red) Thymolphthalein (colourless to blue) Second mark depends on correct indicator except bromothymol blue, which is incorrect but very close to range so allow colour yellow to blue. Third mark Sodium ethanoate is (slightly) alkaline OR Ethanoic acid is a weak acid OR Phenolphthalein pH range coincides with vertical section of the $\mathrm{pH} /$ titration curve OR Titration of weak acid with strong base OR Neutralisation/equivalence point is at 8$10 /$ any number between 8 and 10. OR pK in $+/-1$ lies within vertical region	Litmus/universal indicator Pink to colourless Thymol blue (acid) Phenyl red Methyl red	3

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2 (b) (i)}$	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \rightleftharpoons$ $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$		$\mathbf{1}$
	ALLOW		
	Single arrow		
	$-\mathrm{CO}_{2} \mathrm{H}$		
	$-\mathrm{C}_{2} \mathrm{H}_{5}$		
	Displayed formulae		
IGNORE state symbols even if incorrect			

Question Number	Correct Answer	Reject	Mark
$\begin{align*} & 12 \tag{1}\\ & \text { (b) (ii) } \end{align*}$	Volume of alkali reacting with ethanoic acid $=77.1-11.7=65.4 \mathrm{~cm}^{3}$ Moles of ethanoic acid $=\frac{65.4 \times 0.200}{1000}$ $\begin{equation*} =0.01308 / 1.308 \times 10^{-2}(\mathrm{~mol}) \tag{1} \end{equation*}$ Correct answer no working (2) Ignore SF except 1 Allow internal TE for use of Moles of ethanoic acid $=\frac{77.1 \times 0.200}{1000}$		2

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$ (b) (iii)	Number of moles of ethanol $=$ $0.01308 / 1.308 \times 10^{-2}(\mathrm{~mol})$	$\mathbf{1}$	
	TE same as (ii)		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$ (b) (iv)	Number of moles of ethyl ethanoate		$\mathbf{1}$
	(2llow TE from (ii)/(iii) for example $0.0400-0.01308=0.02692(\mathrm{~mol})$		

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & 12 \\ & (b)(v) \end{aligned}$	$\begin{align*} \mathrm{K}_{\mathrm{C}} & =\frac{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right]} \tag{1}\\ & =\frac{0.02692 \times 0.02692}{0.01308 \times 0.01308} \\ & =4.23579=4.24 \tag{1} \end{align*}$ Ignore SF except one Allow TE from (ii), (iii) and (iv) for example 0.01542 etc gives 2.54 No TE for incorrect expression of K_{c}		2

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$ $\mathbf{(b)} \mathbf{(v i)}$	The units cancel		$\mathbf{1}$
	OR There are the same numbers of moles of reactants and products		

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$ (b) (vii)	(Concentrated) hydrochloric acid contains water		$\mathbf{1}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2 (c) (i)}$	First test tube esterification		
	OR	2	
	ALLOW Condensation (1)		
	Second test tube (acid) hydrolysis	(1)	Alkaline hydrolysis followed by acidification

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & 12 \\ & \text { (c) (ii) } \end{aligned}$	The values are the same within experimental error OR The values are concordant ALLOW The values are similar The equilibrium can be approached from either direction OR The reaction is reversible OR Any comment relating equilibrium to reversibility IGNORE Dynamic equilibrium OR Rate of reverse reaction $=$ rate of forward reaction (1)	Just...the same	2

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$ (c)(iii)	(Acid) catalyst (makes it faster) OR Provides H^{+}(as a catalyst) OR Protonates... OR Protonating agent... OR Donates protons OR Increases H+ concentration	Initiates	$\mathbf{1}$

Total for Section C = 21 marks
 Total for Paper = 90 marks

Pearson Education Limited. Registered company number 872828
with its registered office at Edinburgh Gate, Harlow, Essex CM20 2J E

